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Abstract 

A new solution of the Einstein-neutrino field equations is given. This solution is of 
Plebanski class [4N]3 and describes a beam of neutrinos propagating along straight 
geodesics but possessing an inherent angular momentum density. Another previously 
known solution is also examined, and using some calculations given by Bonnor it is 
concluded that a uniform beam of neutrinos is gravitationally stable and that two such 
beams radiating in the same sense do not interact. 

1. Introduction 

Much work has been done recently on the two-component neutrino field 
in the general theory of relativity. However, the only known exact solutions 
to the Einstein-neutrino field equations appear to be included in those given 
by Griffiths & Newing (1970a, b). Another exact solution has been given by 
Golubyatnikov (1970) with an interesting interpretation. A particular case 
of  one of these solutions had previously been given by Penney (1965). All 
of  these known solutions describe neutrino pure radiation fields. That  is, 
their energy momentum tensors belong to the Plebanski class [4N]2 (see 
Plebanski, 1964). Another interesting feature of  these solutions is that the 
metric tensor for some of them may also be interpreted as admitting null 
electromagnetic fields or photon radiation. 

In this paper I will first obtain a new solution to the Einstein-neutrino 
field equations which corresponds to the Plebanski class [4N]3 and I will 
give a geometrical interpretation of this solution. I will also quote one of the 
exact solutions cited above. For both of these solutions I will apply some 
work done by Bonnor to investigate the physical properties of  these fields. 
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2. The Field Equations 

The gravitational equations may be given in suitable unitst by 

R ~ v - � 8 9  (2.1) 

where Eu, is the energy momentum tensor of the neutrino field, given by 

E,v = ~ {%a~(~: ~: ;~ - ~:a)  + cr.a~(s ~:~., ~:a)} (2.2) 

~a is the two-component neutrino spinor and must satisfy the neutrino 
equation 

cr~a~ ~:A,~ = 0 or ~:A;a~ = 0 (2.3) 

The covariant derivative of a spinor being given by 

where the spinor affine c o n n e c t i o n / ' f a  is given by 

a=2"= (a  A,v + V "8" Ca) 

As a consequence of equations (2.3) the trace of the energy momentum 
tensor (2.2) is zero and therefore the curvature scalar, R in (2.1), must also 
be zero. 

The neutrino flux vector may be taken to be 

It is now possible to define a null tetrad about I v. This is equivalent to taking 
~a as a basis spinor, defining a second basis spinor r/a such that 

and defining the remaining tetrad vectors in terms of these spinors by 

mv = ~a %AB rla, mY = rla %an ~ ,  nv = ~]A a# AB g]B 

A tetrad defined in this way will be referred to as a 'neutrino tetrad'. In order 
to interpret the neutrino field geometrically it is useful to define the vector 

H~, = ~A ~ A ; b  t : m = I~;, 

= r l t ,  + K n #  - -  p m ~  - -  a r ~ ,  

where r,  ~c, p and cr are the spin coefficients associated with the neutrino 
tetrad (see Newman & Penrose, 1962). If  in this expansion K = 0, then l v is a 
tangent vector to a null geodesic congruence and, putting p = 0 + ico, 0, co 
and [~rl are proportional to the expansion, twist and shear of that congruence 
respectively. 

"~ Greek suffices will take the values 0,1, 2, 3, Latin suffices the values 1, 2, 3 and capital 
Latin suffices the values 1, 2. The signature of the metric is taken to be -2. Partial dif- 
ferentiation will be denoted by a comma and covariant differentiation by a semicolon. 
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3. An Exact Solution 

As in a previous paper (Griffiths & Newing, 1970b), I will consider a 
metric tensor of  the form (ilo o) hi h2 h3 (3.1) 

gv~ = h2 -1  O 
h 3 0 1 

where hi are independent of  the coordinate x ~ The non-zero components of  
the Ricci tensor for this metric are 

R l i  = h2,2i + h3,3i - �89 ,22 + hi ,33) --  �89 

RI2 = R21 = �89 

R 13 = R31 = ~ , 2  

where ~, = h3 2 - h2 3. The Pauli matrices in Minkowski space-time will be 
denoted by O'(v)aB and I will use the particular representation 

1 
O"(o) aB= ~2(10 ~) '  O"o) AB= -~--~(~ 10), 

1 
O"<2)AB=---~2(~ o i )  ' O"(3)AB=~--}(Io 0--1) 

The generalised Pauli matrices O"v ~iB may now be given in terms of  those of 
Minkowski space by 

cr0a n = 1 ~ AB v'hl  to"(0) + O"~1) an) 

O"2AIB -- ~/hi h2 (O"(~ + O"(I)AB) + O"(2)AB 

(71 AB = ~v/(hl) O"(0) AB 

~ 3 A B  h3 r AB - -  AB~ A_ ~r I [o"(0) -t- O"(1) J ~ O"(3) AB 

and the components of the spinor affine connection are given by 

FOA B = 0 

hi 1 ~B l 1 
I"~IA B = ~ O-(0)A~ O'(1) ~- ~ l  (~-h1,2 -- h2, l) (O-(0)A~ "~- 12r(1)A~) 0"(2) ~B 

1 1 , ~  _ C~ 
+ ~11  (�89 ,3 -- h3,1)(o-(o)ar + O-(I)Ar d~B -1- ]gt'(Z)AC 0(3) 

hi 2 Y r 
l ' t2A B = ~ O.(0)Ad. O-(I)CB + ~ (O-(0)AO -1- O'(1)AC) 0"(2) 

hi 3 V r 
/-'3a n = ~ O"~0)aC O"(1)Cn 4a/h 1 (o"(0)ac + ~r~l)ac) ~r~3) 

For convenience I will re-label the coordinates by 

X 0 = V ,  X 1 = U, X 2 = X, X 3 = y. 
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Now the form of this metric has been chosen for null radiation fields such 
that the coordinate v is a measure of the distance in the direction of  pro- 
pagation. Using this same approach I choose coordinates such that the 
neutrino flux vector I ~ only has a component in the v direction. This requires 
that the neutrino spinor must have the form 

and the flux vector is then 

I~, = ,r pp3,' 
In this notation the neutrino equations (2.3) reduce to 

Op (i ~x + ~y) logp4 h, = O ~v- O, 

which have the immediate solution 

p = hi-l/4 exp [L(u) + M(x  - iy)] (3.3) 

where L and M are arbitrary complex functions. 
The neutrino energy momentum tensor (2.2) reduces to 

= 2V2 {8"~(iPP'~ - ipp.~ - 9,pp~, ~) + (ipp., - ipp.u - ypp3, ~) 3,~} 

Now substituting in the value o fp  above and putting L(u) = l(u) + i,~(u) the 
non-zero components of this are 

_ 1 e2teM+rt(2h, - - 

El2 = E21 = ~ 2  e21 eM+g i(h'~r' - M' )  

1 eZ, e~t+~(~ , 
El3 = E31 2V'2 + M' )  

where a prime denotes the first derivative: for example ;V = dh/du. The two 
field equations Ra2 = -E ,2  and R13 = -El3  are consistent since the form of 
M requires that E12,2 =-E13,3. Now combining the gravitational field 
equations we obtain that, since the neutrino equations are satisfied, a metric 
may be interpreted as admitting a neutrino field if functions l(u), 2t(u) and 
M(x  - iy) can be found such that 

,k ~ , , ~ /  -- h2,21 h3,31 (3.4) 2e2te~t+~t(2A'--~) =�89 zz+hi  33)+ a 2 

and 

1 21 ~ + ~ r  , _  a �9 ( 3 . 5 )  ~/---~ e e M - --~(~',2 + ~y,3) 
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One exact solution of these equations can be obtained by putting 

x 

where r = (x 2 + y2)1/2, a is a constant and X(U) may be any given function of 
u. It is convenient to consider this as an interior solution for the cylindrical 
region r < a. It can be seen immediately that 

and the field equation (3.5) becomes 

1 e21eM+~tM, l [ x + i y ~  

Now the equation 

has the solution 

M" e M+m x + iy 
2ar 

1 
M - -  �89 a (x -- iy) 

in which case e M+xr = r/a. Thus we may take this as a solution with 

e 21 = ~/(2) X 

Now substituting these into (3.4) we obtain 

2Xa(2A' - V) = h1,22 + hi,33 + y 2 

which reduces to 

(3.8) 

(3.9) 

m _ _  r2 )  
hi 22 -~ hl,33 = X 2 - 1  + 4 ) (  r ~- 

' x a  
and this has a solution 

4:Vr 
h i = x 2 r  - ~ + ~ x a + 1 6 a  2] (3.10) 

Thus a metric given by (3.1), (3.6), (3.7) and (3.10) may be interpreted as 
admitting a neutrino field whose spinor (3.3) may be obtained exactly, up to 
a constant phase factor, from (3.8), (3.9) and (3.10) in terms of the functions 
X(u) and A(u) which are defined by the metric. 

10 
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4. Interpretation 

In order to consider the geometrical properties of this field, I will take 
~a in the form (3.2) as a basis spinor and choose a second basis spinor to be 

~/A = Using these I obtain the neutrino tetrad vectors 
1 " 

1~, = ~(2hl )pp3.  l, mu = ~ 2 P  (i3~,2 + 3t, 3 ) 

It can immediately be seen that 

Hi, = m ~ l~; u = 0 

which demonstrates that the flux vector l ,  is tangent to a null geodesic 
congruence for which the expansion, twist and shear are all zero. 

The energy momentum tensor can now be written as 

where 

E.v = Al .  Iv + Bl(. mv)+ Bl(. rfi~) 

A = ~ 2  e-2l e-(M+~/) (2~' - y), _ 1 e_2fae_(M_M)M~ 

It can thus be seen that this field is of Plebanski class [4N]3 and that it 
cannot be strictly interpreted as possessing positive energy density in the 
sense defined by Griffiths & Newing (1971) or Wainwright (1971). Neither 
does it obey the causality condition introduced by Audretsch (1971). 
However it does strictly describe a neutrino gravitational field since it is a 
solution of the only two necessary field equations (2.1) and (2.3). 

It may now be noted that this solution is of the class which has been 
interpreted by Bonnor (1970) as describing a spinning null fluid enclosed in 
the cylindrical region r < a and moving with the fundamental velocity. 
There is no restriction on the function X(U) and when this is chosen to be a 
suitable smooth pulse function we obtain a model for a particle of  null fluid 
which Bonnor calls a 'spinning nullicon'. However, a spinning null fluid is 
not necessarily to be interpreted as a neutrino field. This may be seen since, 
for a metric of this type, Bonnor's solution for a spinning null fluid does not 
in general satisfy the neutrino gravitational field equations (3.4) and (3.5). 

Following Bonner's method, I have obtained the following exact global 
solution for a stream of neutrinos enclosed in the cylindrical region r < a. 

r > a  

a 2 a 2 
h2 = -16Xy-~, h3 = ~XXr~ 
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h l = x 2 r 2 [  ~ 1 4?( r 1 r2\ r < a  

h 2 = - X y ( ~ - - ~ a  ) ,  h3 = X X ( ~ - ~ a  ) 

The relevant boundary conditions are satisfied since hi, ahi/ax and Ohi/ay 
are all continuous over the surface r = a. The exterior solution is a vacuum 
solution since Ru, = 0 for r > a. 

I will now give a brief summary of Bonnor's interpretation of this field 
since he has shown that it possesses some interesting properties. The exterior 
solution may be interpreted as describing a plane-fronted gravitational 
wave. Since such waves can be generated by a null fluid without spin, the 
exterior solution is locally isometric to an exterior solution for a non- 
spinning null fluid. For  the interior solution Bonnor has considered the 
transformation 

~/(2) u = t - z, V'(2) v = t + z 

which takes the metric into 

= dt 2 _ dz 2 _ dx 2 _ dy2 + ~ (dt - dz) 2 + ~/(2) (h2 dx + h3 dy) (dt - dz) ds 2 

When the h~ are small this may be considered as a perturbation of Minkowski 
space-time. Now I will re-label the new coordinates by 

X 0 ~ t~ X 1 ~ Z~ X 2 = X, X 3 = y, 

and the energy momentum tensor in this coordinate system can be given the 
usual classical interpretation by the linear approximation theory. In 
particular/~02 and/~03 can be interpreted as components of momentum 
density and since the integral of these over the cross-section is zero we 
understand that there is no total linear momentum in the plane of cross- 
section. However, the angular momentum about the direction of  propa- 
gation per unit length is given by 

7ra2 X 
3ff2  

Hence it follows that (1/2~/2) x(r/a) is the corresponding density of angular 
momentum. Bonnor has pointed out that since 7 vanishes on the boundary 
the angular momentum is equal to ( l /a/2)  5~ 7dxdy  and so (1/V'2)7 = 
(1/~/2) X(1 - r/a) could also be the angular momentum density. However, 
the neutrino flux vector is now given by 

l~ = V'(2) e 21 e M+~t 8~ 1 = 2 x r  3t, 1 
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and since this is proportional to r/a the angular momentum density is more 
likely to be (1/2~/2)x(r/a). 

Using Bonnor's definition of energy density 

/9 = Eo 0 = �88 + hl,33 + T 2 - h2~,3 + h3 9' 2) 

" 2 [ [4A'  5 k r  7r2  t 

the total energy per unit length becomes 

e(.)-- ff.x+ 
= 2 X k3 X 

These expressions indicate the following interesting properties. The 
functions h' and X are independent functions of u and so four separate cases 
can be distinguished: 

(1) When A'/> {X the energy density is positive right across the cylinder. 
(2) When {X > A' > aacX the total energy per unit length of the cylinder is 

positive, but the energy density in the central region of the cylinder is 
negative. 

(3) When ~-~-X > A' > 2-tr there will be a large region in the centre where 
the energy density is negative. This will be surrounded by a region of 
positive energy density, but the total energy across the cylinder will be 
negative. 

(4) When A' < ~4X the energy density is negative right across the cylinder. 

Since the functions X and A' are defined independently by the metric, all 
four of these situations are possible even in the same stream of neutrinos at 
different positions. And since they are both functions of u the energy will 
propagate with fundamental velocity. The expression for the energy density 
has been given for a particular observer. It is possible that when this observer 
sees a positive energy density, another observer might see a negative energy 
density. Thus even when A' ~> ~X this is not a positive energy density in the 
sense considered by Griffiths & Newing (1971). 

5. Another Exact  Solution 

Consider now the simple metric 

ds 2 = 2 dv du + h du 2 - dx 2 - dy 2 (5.1) 

where h is independent ofv. This is a particular case of the metric considered 
above and so the field equations may be obtained immediately from there. 
Since Rl2 = 0 and R13 = 0 in this case, we must have M = 0 in (3.3) and the 
neutrino spinor becomes 

~a = ( l l  ) h- lm exp [l(u) + i)~(u)] 
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The only remaining neutrino gravitational equation is (3.4) which becomes 

h,= + tl,33 = 2~/(2) e z' )( (5.2) 

which is independent of x and y and so h can be written 

h = a(u)x 2 + b(u)xy + c(u)y 2 + d(u)x  + e(u)y + f (u )  

where a, b, e, d, e and f are arbitrary functions of u subject to the single 
condition 

a(u) + c(u) = x/(2) e 2' A' 

This is a neutrino pure radiation field which describes a plane wave, the 
neutrino flux vector being 

I. = a/(2) e az 3.1 

This result has been given previously by Griffiths & Newing (1970a). Since 
the metric is divergent for large values of x and y, this solution is only 
appropriate as an interior solution. 

6. Interpretation 

The physical properties of some particular cases of the above solution 
have been extensively discussed by Bonnor (1969). He has started with the 
metric (5.1) and discussed the properties of solutions to the gravitational 
equations 

R,v = -E ,v  = -2p3t,1 8~ I (6.1) 

where p is interpreted as the energy density of the field. He has interpreted 
the solutions to this equation as describing the gravitational field of a beam 
of light, and later (1970) he refers to these solutions as describing beams of 
null fluid or 'nullicons'. However if p is a function of u only then (6.1) is 
equivalent to the neutrino gravitational equation (5.2), and all solutions may 
be interpreted as admitting neutrino pure radiation fields; the neutrino 
spinor being defined such that 

1 
x/-2 ea 2t' = p(u) 

In particular all the exact solutions given by Bonnor (1969) may be inter- 
preted as neutrino fields, and therefore the properties he deduces for beams 
of light are also properties of beams of neutrinos. Namely: 

(1) The gravitational field of neutrinos is twice that of a material source 
of the same energy density. 

(2) The gravitational field of pulses or beams of neutrinos consists of 
plane-fronted gravitational waves. 

(3) Parallel beams (or pulses) of neutrinos shining in the same sense do 
not interact. 

(4) A uniform beam of neutrinos is gravitationally stable. 
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